Cervical spinal stenosis: outcome after anterior corpectomy, allograft reconstruction, and instrumentation

MATTHEW T. MAYR, M.D., BRIAN R. SUBACH, M.D., CHRISTOPHER H. COMEY, M.D., GERALD E. RODTS, M.D., AND REGIS W. HAID, JR., M.D.

Department of Neurosurgery, Spine Section, Emory University School of Medicine and the Emory Clinic, Atlanta, Georgia; and the Neurosurgical and Neurological Group, Inc., Springfield, Massachusetts

Object. The authors undertook a retrospective single-institution review of 261 patients who underwent anterior cervical corpectomy, reconstruction with allograft fibula, and placement of an anterior plating system for the treatment of cervical spinal stenosis to assess fusion rates and procedure-related complications.

Methods. Between October 1989 and June 1995, 261 patients with cervical stenosis underwent cervical corpectomy, allograft fibular bone fusion, and placement of instrumentation for spondylosis (197 patients), postlaminectomy kyphosis (27 patients), acute fracture (25 patients), ossification of the posterior longitudinal ligament (12 patients). All patients suffered neck pain and cervical myelopathy or radiculopathy refractory to medical management. Of the procedures, 133 involved a single vertebral level (two disc levels and one vertebral body), 96 involved two levels, 31 involved three levels, and a single patient underwent a four-level procedure. Clinical and radiographic outcomes were assessed postoperatively and at 6-month intervals. The mean follow-up period was 25.7 months (range 24–47 months).

Successful fusion was documented in 226 patients (86.6%). A stable, fibrous union developed in 33 asymptomatic patients (12.6%), whereas an unstable pseudarthrosis in two patients (0.8%) required reoperation. There were no cases of infection, spinal fluid leakage, or postoperative hematoma. Complications included transient unilateral upper-extremity weakness (two patients), dysphagia (35 transient and seven permanent), and hoarseness (35 transient and two permanent). In 14 patients (5.4%) radiological studies demonstrated evidence of hardware failure.

Conclusions. Cervical corpectomy with fibular allograft reconstruction and anterior plating is an effective means of achieving spinal decompression and stabilization in cases of anterior cervical disease. Symptomatic improvement was achieved in 99.2% of patients. In their series the authors found a fusion rate of 86.6% and rates of permanent hoarseness of 3.4%, dysphagia of 0.7%, and an instrumentation failure rate of 5.4%.

Key Words • cervical spondylosis • corpectomy • allograft • cervical spine • spinal fusion

Allograft bone had been used rarely in the cervical spine until recently, mainly because of concerns of lower fusion rates and the risk of disease transmission.23,32,49 The use of allograft eliminates autograft donor site–related complications, which have been reported to reach as high as 20% in some series. Typical complications of autograft harvesting include prolonged donor-site pain, nerve injury, infection, and hematoma.12,45,46

To assess clinical and radiographic outcomes, we retrospectively reviewed a series of 261 patients, treated over a 6-year period, in whom a single surgeon (R.W.H.) performed anterior cervical corpectomy, placement of allograft fibular strut, and anterior plate fixation.

Clinical Material and Methods

Patient Population

Between October 1989 and June 1995, 261 patients (113 females and 148 males) with cervical stenosis underwent cervical corpectomy and fusion for spondylosis (197 pa-
Outcomes of anterior corpectomy

tients), postlaminectomy kyphosis (27 patients), acute frac-
ture (25 patients), or ossification of the PLL (12 patients)
(Table 1). The mean patient age was 47.4 years (range 15–
72 years). All patients suffered neck pain and cervical my-
elopathy or radiculopathy refractory to medical manage-
ment. Indications for surgery included anterior VB-induced
spinal cord compression causing spinal canal stenosis and
resulting in myelopathy, radiculopathy, or myeloradicu-
lopaphy. Forty-nine patients had previously undergone an-
terior-approach surgery. Of the procedures, 133 involved a
single vertebral level, which was defined as the removal of
one VB and the two adjacent discs. Ninety-six patients
underwent a two level corpectomy; 31, a three-level corp-
ectomy; and one patient, a four-level procedure. No pa-
tients were included in this series who had undergone an
anterior cervical discectomy and adjacent-level fusion or a
supplemental posterior procedure. All patients were placed
in rigid cervical collars for a mean period of 10.7 weeks
(range 6–14 weeks).

Follow-Up Course

The cumulative mean follow-up period was 25.7 months
(range 24–47 months). All patients were examined by the
treating neurosurgeon and underwent static cervical spine
radiography within 3 months of surgery. Clinical and ra-
diographic outcomes were assessed at 6-month intervals
thereafter. After 3 months, all patients underwent plain cer-
vical flexion-extension radiography at each office visit. In
cases in which fusion could not be determined definitively
on radiographs, patients underwent computed tomogra-
phy scanning with 1- to 3-mm cuts and coronal/sagittal
reconstructions to minimize hardware artifact and better
define the graft–native bone interface.

Radiographic assessment of the fusion was based on the
presence or absence of motion on dynamic radiographs and
the extent of bone growth across the graft–native bone
interface. Fusion may be defined as the absence of motion
on dynamic radiographs with osseous trabeculae bridging
both the rostral and caudal ends of the graft. A fibrous un-
ion is defined as the absence of motion on flexion/extendi-
ion views without the presence of osseous trabeculae cross-
ing either of the graft interfaces. Pseudarthrosis is defined
as evidence of both motion on dynamic radiographs and
lack of trabeculae bridging the graft margins.

Surgical Implants

All implants consisted of structural allograft fibula and
fixation with a plating system. The allograft fibula was
freeze-dried, sterilized bone bank graft. The morselized
 cancellous bone obtained during the corpectomy was used
to pack the hollow portion of the fibula.

Our use of anterior plating systems changed over the
course of the study period. In chronological order, we used
the Caspar Anterior Trapezoidal Plates ([135 patients] Age-
culap, San Francisco, CA), Synthes Cervical Spine Locking
Plates ([78 patients] Synthes, Paoli, PA), Orion Anterior
Cervical Plates ([101 patients] Medtronic Sofamor-Dan-
ek Group, Memphis, TN), and Codman Anterior Cervical
Plates ([47 patients] Codman, Johnson & Johnson Profes-
sional, Inc., Raynham, MA). The number of levels of fixa-
tion for each plate is shown in Table 2.

Screws were placed only into the caudal and rostral

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spondylosis</td>
<td>197 (75)</td>
</tr>
<tr>
<td>postlaminectomy kyphosis</td>
<td>27 (10)</td>
</tr>
<tr>
<td>traumatic fracture</td>
<td>25 (9.6)</td>
</tr>
<tr>
<td>PLL</td>
<td>12 (4.6)</td>
</tr>
<tr>
<td>total</td>
<td>261</td>
</tr>
</tbody>
</table>

No intermediate points of fixation into the allograft
fibula were used.

Operative Procedure

Patients are placed in the supine position after induction
of general anesthesia. The cervical spine is placed in mild
extension by using a single, transverse shoulder roll. The
head is rotated 5 to 10˚ to the left and is stabilized on a
foam donut. We avoid external cervical traction but will
apply gentle shoulder traction with tape to improve radi-
diographic exposure. Similarly we do not use esophageal
stethoscopes and nasogastric tubes so as to avoid causing
esophageal injury due to retraction against a rigid object.
A right-sided approach is performed via a transverse inci-
son for exposure of up to two vertebral segments and a
longitudinal incision for longer exposures. The exception
to this is when the plating system is applied to T-1, in
which case a left-sided approach is undertaken (six cases).
To provide tissue relaxation and prevent retraction-
induced injury, extensive undermining of the platysma is
performed. The spine is approached medial to the stern-
ocleidomastoid muscle. The omohyoid muscle may be
safely divided to enhance exposure. The prevertebral fas-
cia may be divided in the midline and electrocautery used
to reflect the longus colli musculature in a subperiosteal
manner to visualize the uncovertebral joints. Single radio-
graphs may be obtained or fluoroscopic imaging may be
performed to confirm operative levels. We avoid perform-
ing electrocautery below C-6 so as not to cause thermal
injury to the recurrent laryngeal nerve.

Both transverse and longitudinal self-retaining retrac-
tors are placed to maintain visualization. We attempt to
release retraction hourly to enhance local tissue perfusion.
Anterior osteophytes are removed at this point, and the
anterior VBs are prepared for the plating system. Com-
plete discectomies are performed at the involved segments
by applying gentle internal distraction. The allograft fibu-
la is packed using the cancellous autograft harvested during
the corpectomy. The VB is resected and undercut lat-

<table>
<thead>
<tr>
<th>Fusion System</th>
<th>No. of Levels</th>
<th>Caspar</th>
<th>Synthes</th>
<th>Orion</th>
<th>Codman</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>37</td>
<td>45</td>
<td>27</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>29</td>
<td>38</td>
<td>18</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35</td>
<td>78</td>
<td>101</td>
<td>47</td>
<td>261</td>
<td></td>
</tr>
</tbody>
</table>
erally (Fig. 1 left) to visualize the exiting nerve roots and the PLL. The width of the decompression varies from 15 to 22 mm. The preoperative imaging studies are assessed to help determine the adequate width of the decompression. The PLL is routinely resected, and the rostral and caudal VBs are carefully undercut using Kerrison rongeurs. The operating microscope may be used to improve visualization of osteophytes, the PLL, and the posterior cortices, and it is usually used in cases of ossification of the PLL or tight stenosis. The superior and inferior end-plates are then gently decorticated and contoured into a parallel position by using a high-speed drill. Removal of the anterior lip of the rostral VB, and the posterior osteophyte of the caudal VB is necessary to allow for adequate graft placement (Fig. 1 right).

A wood-handled cotton-tipped applicator is cut to the size of the defect, which is then used as a template to measure the length of the fibular allograft. The hollow portion of the fibula is packed with morselized cancellous bone harvested from the corpectomy site. The allograft is then placed under gentle distraction. Distraction is then released, providing static graft compression. The shortest possible plate is selected, contoured into gentle lordosis, and positioned using a standard procedure. Closed suction drainage is used in all patients for the first 24 hours.

Results

Clinical Outcome

Two hundred fifty-nine (99.2%) of 261 patients reported improvement in their most significant preoperative complaint of radicular pain, level of functioning, muscle strength, or neck discomfort. Two patients (0.8%) noted no improvement in their myelopathy over the follow-up period.

Fusion Rates

Fusion was documented in 226 patients (86.6%). A stable, fibrous union developed in 33 asymptomatic patients (12.6%), whereas an unstable pseudarthrosis revealed in two patients (0.8%) required reoperation and revision of the construct.

The fusion rates, based on the type of plate implanted, were quite similar (Table 3). Of the 35 patients with Caspar plates, fusion developed in 29, and fibrous union in six. Of the 78 patients with Synthes plates, fusion developed in 67 and fibrous union in 11. Of the 101 patients with Orion plates, fusion developed in 89 and fibrous union in 12. Of the 47 patients with Codman plates, fusion developed in 41, fibrous union in four, and in two patients unstable fusion was demonstrated.

Procedure-Related Complications

There were no infections, cerebrospinal fluid leaks, or postoperative hematomas. There were no tracheal, vascular, or esophageal injuries. Perioperative mortality rate was 0%. There was a significant immediate postoperative complication rate of 36%, of which most were transient, and 9% were long term. Complications included transient unilateral upper-extremity weakness (two patients), dysphagia (35 transient and seven permanent), and hoarseness (35 transient and two permanent). In 14 asymptomatic patients hardware failure was present (12 screw fractures and two screw pullouts). The transient weakness was likely due to a C-5 radiculitis, as described by Saunders, and others.

Dysphagia was subjectively assessed by questioning the patient and, in severe cases, studied by gastrograffin swallow to discount possible occult esophageal injury. Such symptoms were transient in 35 patients (13.4%), but persisted in seven patients (2.7%). The degree of dysphagia did not correlate with the number of levels fused (Table 4).

Hoarseness was subjectively assessed by questioning the patient and, in severe cases, studied by flexible laryngoscopy to discount possible laryngeal nerve injury.
Outcomes of anterior corpectomy

<table>
<thead>
<tr>
<th>Complication</th>
<th>Caspar (35)</th>
<th>Synthes (78)</th>
<th>Orion (101)</th>
<th>Codman (47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>broken plates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>broken screws</td>
<td>7 (20%)</td>
<td>3 (3.8%)</td>
<td>0</td>
<td>2 (4.2%)</td>
</tr>
<tr>
<td>screw pullout</td>
<td>0</td>
<td>2 (2.6%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Addition of Anterior Instrumentation

In this series, instrumentation was used in all cases after placement of a fibular allograft. A rigid plate allows for immediate stabilization of the spine and, when placed correctly, may decrease the incidence of graft migration. When a plate is added to an anterior fusion construct, the morbidity typically associated with spinal instrumentation is also present, including plate malpositioning and failure, increased operative time, and possible nerve root or spinal cord injury. The increased fusion rates associated with an allograft plate system approximate those in cases in which autograft bone is placed without instrumentation; however, the additional risk of harvesting the graft is absent. In the current series of 261 patients, the fusion rate was 98.8% in the 179 patients in whom a plate was placed. Overall fusion rates are highest in series in which both autograft bone and instrumentation are used. The additional risks inherent in placing spinal instrumentation, including nerve root injury, hardware failure or malposition, and increased operative time, are not trivial considerations.

Allograft bone, either iliac crest or fibula, has been used with increasing frequency as a substitute for autograft bone. Although the complications associated with autograft harvesting are eliminated, the use of allograft bone may decrease fusion rates, prolong the time for graft incorporation, and introduce the risk of disease transmission. MacDonald, et al., found no difference in fusion rates between patients in whom autograft or allograft bone was used for spinal reconstruction. The incidence of pseudarthrosis when using allograft bone was slightly higher, especially when longer-length constructs were required. Eleraky, et al., also found no difference in the fusion or complication rates between the 141 patients who received autografts and the 44 patients who received allografts.

Addition of Anterior Instrumentation

In this series, instrumentation was used in all cases after placement of a fibular allograft. A rigid plate allows for immediate stabilization of the spine and, when placed correctly, may decrease the incidence of graft migration. When a plate is added to an anterior fusion construct, the morbidity typically associated with spinal instrumentation is also present, including plate malpositioning and failure, increased operative time, and possible nerve root or spinal cord injury. The increased fusion rates associated with an allograft plate system approximate those in cases in which autograft bone is placed without instrumentation; however, the additional risk of harvesting the graft is absent. In the current series of 261 patients.
the fusion rate was 86.6%, the fibrous union rate was 12.6%, and the pseudarthrosis rate was 0.8%. Overall, radiographical stability and documented improvement in neck pain were demonstrated in 99.2% of the patients. In patients with a stable fibrous union, however, a pseudarthrosis may develop over a longer follow-up period.

Type of Orthosis

Various external immobilization systems have been used postoperatively to provide comfort and enhanced fusion rates. In the majority of published series the authors have used a rigid collar, although several have used other devices (Table 6). Apart from issues of comfort, halo brace immobilization has several potential complications including infection and pin loosening, as well as other more serious complications such as brain abscess or sinus thrombosis.2,18,19,21,30,33,34,44 The Minerva brace is also uncomfortable. There have been reports on the difficulty in maintaining oral and facial hygiene and, occasionally, pain from the temporomandibular joint.6

In the current series, a rigid cervical collar was used in all patients for a minimum of 6 weeks. We believe that in cases in which the cervical spine has been fitted with instrumentation the need for more aggressive bracing is obviated in most cases.

Special Considerations

Longer-length constructs tend to be associated with a higher failure rate than their shorter counterparts, with failure rates approaching 20% in three- and four-level fusions.16,26,28,31 If the planned construct is to span more than two vertebral segments, we often undertake a combined anterior–posterior approach, which creates an intrinsically stronger construct and precludes the need for more aggressive external stabilization. Schultz, et al.,38 have reported 72 patients who underwent combined anterior–posterior decompression and fusion in a single stage. They reported a 100% fusion rate. The combined approach may be particularly valuable in individuals with osteopenia, traumatic injury causing anterior and posterior instability, or those with predisposing risk factors such as diabetes, tobacco use, or dialysis dependence.38

The records documenting the smoking patterns of patients early in the series were incomplete and therefore could not be analyzed. Chronic cigarette smoking may adversely affect fusion rates, as has been shown in the excellent review by Hadley and Reddy.24 In patients who smoke, the bone has less potential for vascular ingrowth and capillary budding, both of which are essential for fusion to occur. It has been our practice to offer chronic tobacco users autologous bone, usually iliac crest, to in-

TABLE 6

Summary of published series of patients who underwent corpectomy

<table>
<thead>
<tr>
<th>Author & Year</th>
<th>No. of Cases</th>
<th>Graft Used*</th>
<th>Plates</th>
<th>Displacement</th>
<th>Orthosis Used</th>
<th>Fusion Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Auto fib</td>
<td></td>
<td>1 collar</td>
<td>Minerva</td>
<td>Osseous</td>
</tr>
<tr>
<td>Whitecloud, 1976</td>
<td>9</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>collar</td>
<td>Fibrous</td>
</tr>
<tr>
<td>Boni, et al., 1984</td>
<td>39</td>
<td>AIBG</td>
<td>No</td>
<td>1</td>
<td>Minerva</td>
<td>Pseudarthrosis</td>
</tr>
<tr>
<td>Yonenobu, et al., 1985</td>
<td>21</td>
<td>AIBG</td>
<td>No</td>
<td>3</td>
<td>collar</td>
<td>Complication (%)</td>
</tr>
<tr>
<td>Hannai, et al., 1986</td>
<td>30</td>
<td>AIBG</td>
<td>No</td>
<td>3</td>
<td>collar</td>
<td>9</td>
</tr>
<tr>
<td>Bernard & Whitecloud, 1987</td>
<td>21</td>
<td>Auto fib</td>
<td>No</td>
<td>1</td>
<td>collar</td>
<td>0</td>
</tr>
<tr>
<td>Brown, et al., 1988</td>
<td>13</td>
<td>3 auto fib, 10 AIBG</td>
<td>Yes</td>
<td>1 Fx Minerva</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Tippets & Apfelbaum, 1988</td>
<td>18</td>
<td>Fibula or tibia</td>
<td>Yes</td>
<td>0</td>
<td>NA</td>
<td>18</td>
</tr>
<tr>
<td>Caspar, et al., 1989</td>
<td>41</td>
<td>AIBG</td>
<td>Yes</td>
<td>0</td>
<td>soft</td>
<td>41</td>
</tr>
<tr>
<td>Kojima, et al., 1989</td>
<td>45</td>
<td>AIBG</td>
<td>No</td>
<td>4 halo</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Zdeblick & Bohlman, 1989</td>
<td>14</td>
<td>AIBG/fibula</td>
<td>No</td>
<td>3</td>
<td>Post or halo</td>
<td>14</td>
</tr>
<tr>
<td>Fernyhough, et al., 1991</td>
<td>59</td>
<td>Auto fib</td>
<td>No</td>
<td>3 collar</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>Saunders, et al., 1991</td>
<td>40</td>
<td>AIBG</td>
<td>No</td>
<td>1 collar</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>Seifert & Stolke, 1991</td>
<td>22</td>
<td>AIBG</td>
<td>No</td>
<td>0 collar</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Hu & Wilber, 1993</td>
<td>31</td>
<td>27 AIBG, 4 auto fib</td>
<td>No</td>
<td>0 (4 halo)</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Herman & Sonntag, 1994</td>
<td>20</td>
<td>19 AIBG</td>
<td>Yes</td>
<td>0 collar</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Tominega, et al., 1994</td>
<td>8</td>
<td>AIBG</td>
<td>Yes</td>
<td>0 collar</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Ebraheim, et al., 1995</td>
<td>25</td>
<td>22 AIBG</td>
<td>Yes</td>
<td>1 Fx</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>MacDonald, et al., 1997</td>
<td>26</td>
<td>Allo fib</td>
<td>Yes</td>
<td>3 auto fib</td>
<td>36</td>
<td>9 permanent</td>
</tr>
<tr>
<td>Emery, et al., 1998</td>
<td>57</td>
<td>AIBG</td>
<td>No</td>
<td>4 13 halo</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Fessler, et al., 1998</td>
<td>93</td>
<td>7 AIBG, 86 fib</td>
<td>No</td>
<td>27</td>
<td>82</td>
<td>11</td>
</tr>
<tr>
<td>Eleraky, et al., 1999</td>
<td>185</td>
<td>141 AIBG, 44 allo fib</td>
<td>179 yes, 6 no</td>
<td>0</td>
<td>226</td>
<td>33</td>
</tr>
<tr>
<td>Mayr, et al., present series</td>
<td>261</td>
<td>Allo fib</td>
<td>Yes</td>
<td>2 collar</td>
<td>226</td>
<td>33</td>
</tr>
</tbody>
</table>

* AIBG = autologous iliac bone graft; allo fib = allograft fibula; auto fib = autograft fibula; collar = rigid cervical collar; fib = fibula; NA = not applicable; soft = soft cervical collar.
Outcomes of anterior corpectomy

crease the chance for a successful fusion. The majority of patients in this series were nonsmokers. We acknowledge the limitations of this study, including the lack of data on tobacco use and the retrospective nature of the study’s design. A prospective study, in which possible graft choices and instrumentation use are compared, may yield more definitive results regarding cervical corpectomy.

Conclusions

This work represents the largest clinical series in the literature to date of patients treated with cervical corpectomy followed by fibular allograft and plate reconstruction. In selected cases, we believe such instrumentation/allograft fusions represent a safe and effective alternative to autograft bone for osteosynthesis following cervical corpectomy, while avoiding autograft donor-site complications. Acceptable fusion rates may be obtained with postoperative rigid collar immobilization, while avoiding the problems associated with more extensive brace therapies.

Financial Disclosure

Gerald E. Rodts, Jr., M.D., has a financial interest in Medtronic Sofamor-Danek, and Regis W. Haid, Jr., M.D., has a financial interest in Medtronic Sofamor-Danek and Codman, Johnson & Johnson Professional, Inc.

References

37. Saunders RL, Bernini PM, Shirreffs TG, Jr., et al: Central corpectomy for cervical spondylotic myelopathy: a consecutive

Manuscript received January 4, 2001.
Accepted in final form August 11, 2001.
Address reprint requests to: Regis W. Haid, Jr., M.D., Department of Neurological Surgery, The Emory Clinic, Suite 6200, Building B, 1365 Clifton Road, North East, Atlanta, Georgia 30322.
email: regis_haid@emory.edu.